SAMPLE QUESTION PAPER Class-X (2017–18) Mathematics

Time allowed: 3 Hours

Max. Marks: 80

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 30 questions divided into four sections A, B, C and D.
- (iii)Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
- (*iv*) There is no overall choice. However, an internal choice has been provided in four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

	Section A
	Question numbers 1 to 6 carry 1 mark each.
1.	Write whether the rational number $\frac{7}{75}$ will have a terminating decimal expansion or a
	nor-terminating repeating decimal expansion.
2.	Find the value(s) of k, if the quadratic equation $3x^2 - k\sqrt{3}x + 4 = 0$ has equal roots.
3.	Find the eleventh term from the last term of the AP:
	27, 23, 19,, -65.
4.	Find the coordinates of the point on y-axis which is nearest to the point $(-2, 5)$.
5.	In given figure, ST RQ, PS = 3 cm and SR = 4 cm. Find the ratio of the area of Δ PST to the area of Δ PRQ.
6.	If $\cos A = \frac{2}{5}$, find the value of $4 + 4 \tan^2 A$

	Section B
	Question numbers 7 to 12 carry 2 marks each.
7.	If two positive integers p and q are written as $p = a^2b^3$ and $q = a^3b$; a, b are prime
	numbers, then verify:
	LCM $(p, q) \times HCF (p, q) = pq$
8.	The sum of first n terms of an AP is given by $S_n = 2n^2 + 3n$. Find the sixteenth term of the AP.
9.	Find the value(s) of k for which the pair of linear equations $kx + y = k^2$ and $x + ky = 1$ have infinitely many solutions.
10.	If $\left(1,\frac{p}{3}\right)$ is the mid-point of the line segment joining the points (2, 0) and $\left(0,\frac{2}{9}\right)$,
	then show that the line $5x + 3y + 2 = 0$ passes through the point (-1, 3p).
11.	A box contains cards numbered 11 to 123. A card is drawn at random from the box. Find the probability that the number on the drawn card is
	(i) a square number
	(ii) a multiple of 7
12.	A box contains 12 balls of which some are red in colour. If 6 more red balls are put in the box and a ball is drawn at random, the probability of drawing a red ball doubles than what it was before. Find the number of red balls in the bag.
	Section C
	Question numbers 13 to 22 carry 3 marks each.
13.	Show that exactly one of the numbers n, $n + 2$ or $n + 4$ is divisible by 3.
14.	Find all the zeroes of the polynomial $3x^4 + 6x^3 - 2x^2 - 10x - 5$ if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
15.	Seven times a two digit number is equal to four times the number obtained by reversing the order of its digits. If the difference of the digits is 3, determine the number.
16.	In what ratio does the x-axis divide the line segment joining the points $(-4, -6)$ and $(-1, 7)$? Find the co-ordinates of the point of division.
	OR
	The points A(4, -2), B(7, 2), C(0, 9) and D(-3 , 5) form a parallelogram. Find the
	length of the altitude of the parallelogram on the base AB.

20.	In giver	n figure ABPC is a qua	drant of	a circle	of radius	.14 cm a	and a semi	circle is
	drawn with BC as diameter. Find the area of the shaded region							
21.	Water in	n a canal, 6 m wide and	1.5 m de	ep, is flo	wing wit	th a speed	d of 10 km	/h. How
	much ar	ea will it irrigate in 30 r	ninutes, 1	$1 \otimes \text{cm of}$	standing	; water 1s	needed?	
	A cone	of maximum size is car	ved out	from a ci	ube of ed	lge 14 cn	n. Find the	surface
	area of t	the remaining solid after	the cone	is carved	d out.	8		
22.	Find the	e mode of the following	distributi	on of ma	rks obtair	ned by the	e students i	n an
	CXamma		1	1	T			
		Marks obtained	0-20	20-40	40-60	60-80	80-100	
		Number of students	15	18	21	29	1/	
	Given the value	he mean of the above dis	stribution	18 53, us	ing empir	rical relat	tionship est	imate
			Sec			1 1		
22	A train	Question nur	$\frac{1}{23}$	$\frac{1030 \text{ ca}}{260 \text{ km} \text{ m}}$	rry 4 ma	rks each	l.	lagata
23.	travel th	he same distance if its sp	eed were	500 km/ho	ur more.	Find the	original spe	eed of
	the train	1.						
	<i>c</i> 1 1)	OR				
	Check whether the equation $5x^2 - 6x - 2 = 0$ has real roots and if it has, find them by the method of completing the square. Also verify that roots obtained satisfy the given equation.							
24.	An AP sum of t	consists of 37 terms. The last three terms is 42	ne sum o 9. Find th	f the three three the three the three the three	e middle	e most ter	rms is 225	and the
25.	Show the squares	hat in a right triangle, the of the other two sides.	e square	of the h	ypotenus	e is equa	l to the sur	n of the
				OR				
	Prove the squares	hat the ratio of the area of their corresponding s	s of two ides.	similar	triangles	is equal	to the ratio	o of the

26.	Draw a triangle ABC with side BC = 7 cm, $\angle B = 45^{\circ}$, $\angle A = 105^{\circ}$. Then, construct a								
	triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle ABC$.								
27.	Prove that $\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta}$	$\frac{\theta+1}{\theta-1} = \alpha$	$\cos \theta +$	cot θ					
28.	The angles of depres observed from the top tower and also the hor	ssion of o of a tor rizontal o	the top wer are 3 distance	and botto 80° and 60 between th	om of a)°, respe he build	t buildin ctively. ing and t	ng 50 me Find the the tower	etres high height of	n as the
29.	Two dairy owners A and B sell flavoured milk filled to capacity in mugs of negligible thickness, which are cylindrical in shape with a raised hemispherical bottom. The mugs are 14 cm high and have diameter of 7 cm as shown in given figure. Both A and B sell flavoured milk at the rate of ₹ 80 per litre. The dairy owner A uses the formula $\pi r^2 h$ to find the volume of milk in the mug and charges ₹ 43.12 for it. The dairy owner B is of the view that the price of actual quantity of milk should be charged. What according to him should be the price of one mug of milk? Which value is exhibited by the dairy owner B? $\left(use \pi = \frac{22}{7} \right)$								
30.	The following distribution The mean pocket allo	ution she wance is	ows the o s₹18. Fi	daily pock nd the mis	et allow ssing fre	vance of quency	children k.	of a loca	lity.
	Daily pocket allowance (in ₹)	11–13	13–15	15–17	17–19	19–21	21–23	23–25	
	Number of children	3	6	9	13	k	5	4	
	OR								
	The following frequency distribution shows the distance (in metres) thrown by 68 students in a Javelin throw competition.								
	Distance (in m)	0-	10 10-2	0 20–30	30–40	40–50	50-60	60–70	
	Number of stude	ents 4	5	13	20	14	8	4	
	Draw a less than type using this curve.	e Ogive	for the g	given data	and fin	d the mo	edian dis	tance thro	own

Marking Scheme

Mathematics Class X (2017-18)

Section A

S.No.	Answer	Marks
1.	Non terminating repeating decimal expansion.	[1]
2.	$k = \pm 4$	[1]
3.	$a_{11} = -25$	[1]
4.	(0, 5)	[1]
5.	9:49	[1]
6.	25	[1]

Section B

7.	$LCM(p,q) = a^3b^3$	[1/2]
	HCF $(p, q) = a^2b$	[1/2]
	LCM $(p, q) \times HCF (p, q) = a^{5}b^{4} = (a^{2}b^{3}) (a^{3}b) = pq$	[1]
8.	$S_n = 2n^2 + 3n$	[1/2]
	$S_1 = 5 = a_1$	[1/2]
	$S_2 = a_1 + a_2 = 14 \implies a_2 = 9$	[1/2]
	$d = a_2 - a_1 = 4$	
	$a_{16} = a_1 + 15d = 5 + 15(4) = 65$	[1/2]
9.	For pair of equations $kx + 1y = k^2$ and $1x + ky = 1$	
	We have: $\frac{a_1}{a_2} = \frac{k}{1}, \frac{b_1}{b_2} = \frac{1}{k}, \frac{c_1}{c_2} = \frac{k^2}{1}$	
	For infinitely many solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	[1/2]
	$\therefore \frac{k}{1} = \frac{1}{k} \Longrightarrow k^2 = 1 \Longrightarrow k = 1, -1 \qquad \dots(i)$	[1/2]
	and $\frac{1}{k} = \frac{k^2}{1} \Longrightarrow k^3 = 1 \Longrightarrow k = 1$ (ii)	[1/2]
	From (i) and (ii), $k = 1$	[1/2]
10.	Since $\left(1, \frac{p}{3}\right)$ is the mid-point of the line segment joining the points (2, 0) and	
	$\left(0, \frac{2}{9}\right)$ therefore, $\frac{p}{3} = \frac{0 + \frac{2}{9}}{2} \Longrightarrow p = \frac{1}{3}$	[1]
	The line $5x + 3y + 2 = 0$ passes through the point (-1, 1) as $5(-1) + 3(1) + 2 = 0$	[1]
11.	(i) P(square number) = $\frac{8}{113}$	[1]
	(ii) P(multiple of 7) = $\frac{16}{113}$	[1]

12.	Let number of red balls be $= x$	
	\therefore P(red ball) = $\frac{x}{12}$	
	If 6 more red balls are added:	[1/2]
	The number of red balls = $x + 6$	
	$P(\text{red ball}) = \frac{x+6}{18}$	
	Since, $\frac{x+6}{18} = 2\left(\frac{x}{12}\right) \Rightarrow x = 3$	[1]
	\therefore There are 3 red balls in the bag.	[1/2]

Section C

13.	Let $n = 3k$, $3k + 1$ or $3k + 2$.	
	(i) When $n = 3k$:	
	n is divisible by 3.	
	$n + 2 = 3k + 2 \implies n + 2$ is not divisible by 3.	[1]
	$n + 4 = 3k + 4 = 3(k + 1) + 1 \implies n + 4$ is not divisible by 3.	
	(ii) When $n = 3k + 1$:	
	n is not divisible by 3.	
	$n + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1) \implies n + 2$ is divisible by 3.	[1]
	$n + 4 = (3k + 1) + 4 = 3k + 5 = 3(k + 1) + 2 \implies n + 4$ is not divisible by 3.	
	(iii) When $n = 3k + 2$:	
	n is not divisible by 3.	
	$n + 2 = (3k + 2) + 2 = 3k + 4 = 3(k + 1) + 1 \implies n + 2$ is not divisible by 3.	
	$n + 4 = (3k + 2) + 4 = 3k + 6 = 3(k + 2) \implies n + 4$ is divisible by 3.	[1]
	Hence exactly one of the numbers n, $n + 2$ or $n + 4$ is divisible by 3.	
14.	Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are the two zeroes therefore, $\left(x - \sqrt{\frac{5}{3}}\right)\left(x + \sqrt{\frac{5}{3}}\right) = \frac{1}{3}(3x^2 - 5)$	[1]
	is a factor of given polynomial.	
	We divide the given polynomial by $3x^2 - 5$.	
	$x^2 + 2x + 1$	
	$3x^2 - 5\sqrt{3x^4 + 6x^3 - 2x^2 - 10x - 5}$	
	3X = 3 $3X + 0X = 2X = 10X = 3$	
	$/\pm 3x^4 \mp 5x^2$	
	$\overline{6x^3 + 3x^2 - 10x - 5}$	[1]
	$+6x^3$ $\mp 10x$	
	$\frac{3x^2}{5}$	
	3x - 3 + $3y^2 \pm 5$	
	$\frac{\pm 3x + 3}{2}$	
	0	
	For other zeroes, $x^2 + 2x + 1 = 0 \implies (x + 1)^2 = 0, x = -1, -1$	
	\therefore Zeroes of the given polynomial are $\sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}, -1$ and -1 .	[1]

15.	Let the ten's and the units digit be y and x respectively.	
	So, the number is $10y + x$.	[1/2]
	The number when digits are reversed is $10x + y$.	[1/2]
	Now, $7(10y + x) = 4(10x + y) \implies 2y = x$ (i)	[1]
	Also $x - y = 3$ (ii)	[1/2]
	Solving (1) and (2), we get $y = 3$ and $x = 6$.	
	Hence the number is 36.	[1/2]
16.	Let x-axis divides the line segment joining $(-4, -6)$ and $(-1, 7)$ at the point P in the	[1/2]
	$(1 4l_{2}, 7 (l_{2}))$	[1/2]
	Now, coordinates of point of division $P\left(\frac{-1-4k}{k+1}, \frac{7-6k}{k+1}\right)$	
	Since P lies on x-axis, therefore $\frac{7-6k}{-0}$	[1]
	Since T lies on x-axis, therefore $k+1$	[1]
	$\Rightarrow 7 - 6k = 0$	
	\implies k = $\frac{7}{4}$	
	6	F1/01
	Hence the ratio is $1:-6:7$	[1/2]
	6	[1]
	Now, the coordinates of P are $\left(\frac{-34}{13}, 0\right)$.	
	OR	
	Let the height of parallelogram taking AB as base be h.	
	Now AB = $\sqrt{(7-4)^2 + (2+2)^2} = \sqrt{3^2 + 4^2} = 5$ units.	[1]
	Area (\triangle ABC) = $\frac{1}{2} [4(2-9)+7(9+2)+0(-2-2)] = \frac{49}{2}$ sq units.	[1]
	Now, $\frac{1}{2} \times AB \times h = \frac{49}{2}$	
	$\Rightarrow \frac{1}{2} \times 5 \times h = \frac{49}{2}$	
	\Rightarrow h = $\frac{49}{5}$ = 9.8 units.	[1]
17.	\angle SQN = \angle TRM (CPCT as \triangle NSQ $\cong \triangle$ MTR)	[1]
	P	
	SA1 2 T	
	Since, $\angle P + \angle 1 + \angle 2 = \angle P + \angle POR + \angle PRO$ (Angle sum property)	
	\Rightarrow /1+ /2 = /POR + /PRO	
	$\rightarrow 2/1 - 2/POR$ (as $/1 - /2$ and $/DOR - /DRO$)	
	$\rightarrow 2 \angle 1 - 2 \angle 1 \forall Q X (as \angle 1 - 2 \angle 2 a) u \angle 1 \forall Q X - 2 \Gamma X Q)$	[1]
	$\angle I = \angle PQK$	

$$\begin{array}{|c|c|c|c|c|c|} \hline 19. & \frac{\cos e^2 63^\circ + \tan^2 24^\circ}{\cos^2 63^\circ + \tan^2 24^\circ} + \frac{\sin^2 63^\circ + \cos 63^\circ \sin 27^\circ + \sin 27^\circ \sec 63^\circ}{2(\csc e^2 65^\circ - \tan^2 25^\circ)} \\ &= \frac{\cos e^2 63^\circ + \tan^2 24^\circ}{\tan^2 24^\circ + \csc^2 (20^\circ - 27^\circ)} + \frac{\sin^2 63^\circ + \cos 63^\circ \cos (00^\circ - 27^\circ)}{2(\csc e^2 65^\circ - \cot^2 (90^\circ - 25^\circ))} \\ &= \frac{\cos e^2 63^\circ + \tan^2 24^\circ}{\tan^2 24^\circ + \csc^2 63^\circ} + \frac{\sin^2 63^\circ + \cos^2 63^\circ + \sin 27^\circ \csc 27^\circ}{2(\csc e^2 65^\circ - \cot^2 65^\circ)} \\ &= 1 + \frac{1+1}{2(1)} = 2 \\ \hline 11 \\ &= 1 + \frac{1+1}{2(1)} = 2 \\ \hline 11 \\ &= 1 + \cos \theta = \sqrt{2} \\ &\Rightarrow (\sin \theta + \cos \theta)^2 = (\sqrt{2})^2 \\ &\Rightarrow \sin \theta \cos \theta = \sqrt{2} \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &= 1 + 2\sin \theta \cos \theta = 2 \\ &$$

I	21.	Let the area that can be irrigated in 30 minute be $A m^2$.	
		Water flowing in canal in 30 minutes = $\left(10,000 \times \frac{1}{2}\right)$ m = 5000 m	[1/2]
		Volume of water flowing out in 30 minutes = $(5000 \times 6 \times 1.5) \text{ m}^3 = 45000 \text{ m}^3 \dots (i)$	[1]
		Volume of water required to irrigate the field = $A \times \frac{8}{100} \text{ m}^3$	[1/2]
		(ii) Equating (i) and (ii), we get	
		$A \times \frac{8}{100} = 45000$	[1]
		$A = 562500 \text{ m}^2.$	
		OR	[1/2]
		$l = \sqrt{7^2 + 14^2} = 7\sqrt{5}$	[1]
		Surface area of remaining solid = $6l^2 - \pi r^2 + \pi r l$, where r and l are the radius and slant height of the cone.	[-]
		• <u> </u>	
		14 cm	
			[1]
		$= 6 \times 14 \times 14 - \frac{22}{7} \times 7 \times 7 + \frac{22}{7} \times 7 \times 7 \sqrt{5}$	[1/0]
		$= 1176 - 154 + 154\sqrt{5}$	[1/2]
		$= (1022 + 154\sqrt{5}) \text{ cm}^2$	
	22.	$Mode = \ell + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$	[1]
		$= 60 + \left(\frac{29-21}{58-21-17}\right) \times 20$	
		= 68	[1]
		So, the mode marks is 68.	
		Empirical relationship between the three measures of central tendencies is:	
		3 Median = Mode + 2 Mean	
		3 Median = $68 + 2 \times 53$	[1]
		Median $= 58$ marks	

Section D

23.	Let original speed of the train be x km/h.	
	Time taken at original speed = $\frac{360}{x}$ hours	[1]
	Time taken at increased speed = $\frac{360}{x+5}$ hours	[1/2]
	Now, $\frac{360}{x} - \frac{360}{x+5} = \frac{48}{60}$	[1½]
	$\Rightarrow 360 \left[\frac{1}{x} - \frac{1}{x+5} \right] = \frac{4}{5}$	
	$\Rightarrow x^2 + 5x - 2250 = 0$	
	\Rightarrow x = 45 or -50 (as speed cannot be negative)	[1]
	\Rightarrow x = 45 km/h	
	Discriminant = $b^2 - 4ac = 36 - 4 \times 5 \times (-2) = 76 > 0$	[1]
	So, the given equation has two distinct real roots	[-]
	$5x^2 - 6x - 2 = 0$	
	Multiplying both sides by 5.	
	$(5x)^2 - 2 \times (5x) \times 3 = 10$	
	$\Rightarrow (5x) - 2 \times (5x) \times 5 + 5 = 10 + 5$ $\Rightarrow (5x - 3)^2 - 19$	[1]
	$\Rightarrow (5x-5) = 15$ $\Rightarrow 5x = 2 \Rightarrow \pm \sqrt{10}$	[1]
	$\Rightarrow 3x - 3 = \pm \sqrt{19}$	
	$\Rightarrow x = \frac{3 \pm \sqrt{19}}{1}$	[1]
	5 Verification	
	$\sqrt{2}$	
	$5\left(\frac{3+\sqrt{19}}{5}\right)^2 - 6\left(\frac{3+\sqrt{19}}{5}\right) - 2 = \frac{9+6\sqrt{19}+19}{5} - \frac{18+6\sqrt{19}}{5} - \frac{10}{5} = 0$	[1/2]
	Similarly, $5\left(\frac{3-\sqrt{19}}{5}\right)^2 - 6\left(\frac{3-\sqrt{19}}{5}\right) - 2 = 0$	[1/2]
24.	Let the three middle most terms of the AP be $a - d$, a , $a + d$.	
	We have, $(a - d) + a + (a + d) = 225$	[1]
	$\Rightarrow 3a = 225 \Rightarrow a = 75$	[1/2]
	Now, the AP is $12d = 2d =$	
	$a = 180, \dots, a = 20, a = 0, a, a = 0, a = 20, \dots, a = 180$ Sum of last three terms:	
	(a + 18d) + (a + 17d) + (a + 16d) = 429	[1]
	$\Rightarrow 3a + 51d = 429 \Rightarrow a + 17d = 143$	
	$\Rightarrow 75 + 17d = 143$	
	\Rightarrow d = 4	[1/2]
	Now, first term = $a - 18d = 75 - 18(4) = 3$	[1]
	\therefore The AP is 3, 7, 11,, 147.	

	Hence, $\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(ABOR)} = \frac{BC}{OR} \times \frac{AM}{RN}$ from (i)	
	$= \frac{AB}{RO} \times \frac{AB}{RO}$ [from (ii) and (iii)]	
	PQ PQ $(AD)^2$	
	$=\left(\frac{AB}{PQ}\right)$	[1/2]
	$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2 \text{ Using (iii)}$	[1/2]
26.	Draw \triangle ABC in which BC = 7 cm, \angle B = 45°, \angle A = 105° and hence \angle C = 30°.	[1]
	Construction of similar thangle A DC as shown below.	[5]
	A'	
	A	
	B ₁	
	B ₂	
	B ₃	
	B ₄	
	*	
27.	$LHS = \frac{\cos\theta - \sin\theta + 1}{\cos\theta + \sin\theta - 1}$	
	$\cos\theta + \sin\theta - 1$ $\cos\theta - \sin\theta + 1$ $\cos\theta + \sin\theta + 1$	[1]
	$= \frac{1}{\cos\theta + \sin\theta - 1} \times \frac{1}{\cos\theta + \sin\theta + 1}$	[-]
	$=\frac{(\cos\theta+1)^2-\sin^2\theta}{(\cos\theta+1)^2-\sin^2\theta}$	[1]
	$(\cos\theta + \sin\theta)^2 - 1^2$	
	$= \frac{\cos^2 \theta + 1 + 2\cos \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta - 1}$	
	$\cos^2 \theta + 2\cos \theta$	
	$=\frac{2\cos\theta+2\cos\theta}{2\sin\theta\cos\theta}$	F11
	$\frac{2\cos\theta(\cos\theta+1)}{2\cos\theta(\cos\theta+1)}$	
	$-\frac{2\sin\theta\cos\theta}{2\sin\theta\cos\theta}$	
	$=\frac{\cos\theta+1}{\sin\theta}=\cos\theta+\cot\theta=RHS$	
	5111 0	[1]

28. In
$$\Delta BTP \Rightarrow \tan 30^{\circ} = \frac{TP}{BP}$$

 $\Rightarrow \frac{1}{\sqrt{3}} = \frac{TP}{BP}$
 $BP = TP\sqrt{3}$...(i) [1/2]
 $BP = TP\sqrt{3}$...(i) [1/2]
 $In \ \Delta GTR,$
 $\tan 60^{\circ} = \frac{TR}{GR} \Rightarrow \sqrt{3} = \frac{TR}{GR} \Rightarrow GR = \frac{TR}{\sqrt{3}}$...(ii) [1/2]
Now, $TP\sqrt{3} = \frac{TR}{\sqrt{3}}$ (as $BP = GR$)
 $\Rightarrow 3TP = TP + PR$
 $\Rightarrow 2TP = BG \Rightarrow TP = \frac{50}{2}m = 25 m$ [1]
Now, $TR = TP + PR = (25 + 50) m$.
Height of tower $=TR = 75 m$. [1/2]
Distance between building and tower $= GR = \frac{TR}{\sqrt{3}}$
 $\Rightarrow GR = \frac{75}{\sqrt{3}}m = 25\sqrt{3} m$ [1/2]
29. Capacity of mug (actual quantity of milk) $= \pi^2h - \frac{2}{3}\pi^3$ [1]
 $= \pi r^2 \left(h - \frac{2}{3}r\right)$
 $= \frac{2695}{6} cm^3$ [1]
Amount dairy owner B should charge for one mug of milk
 $= \frac{2695}{6} \times \frac{80}{1000} = ₹ 35.93$ [1]

